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Abstract. Motivated by the recent experimental studies on layered ferromagnetic metallic system GdI2 and
its doped variant GdI2Hx we develop a model to understand their ground state magnetic phase diagram.
Based on first principle electronic structure calculations we write down a phenomenological model and solve
it under certain approximations to obtain the ground state energy. In the process we work out the phase
diagram of the correlated double exchange model on a triangular lattice for the specific band structure at
hand.

PACS. 75.47.Gk Colossal magnetoresistance – 75.30.Et Exchange and superexchange interactions

1 Introduction

Layered magnetic systems with coupled charge and spin
degrees of freedom have received considerable attention
recently owing to their rich phase diagram and intrigu-
ing transport properties. The layered system GdI2 and its
doped variant GdI2Hx , recently studied by Felser et al. [1]
and Ryazanov et al. [2], show significant magnetoresis-
tance [3] of about 60% at room temperature with a ferro-
magnetic (FM) transition temperature close to 300 K [4].
Unlike the magnetoresistive manganites or their bilayer
counterparts, there is no significant Jahn-Teller coupling
in these systems and that enables one to study a purely
electronic model, coupled to magnetic degrees of free-
dom, without the involvement of the lattice. In addition,
GdI2 is isostructural to the well-known dichalcogenides
like 2H-TaS2, 2H-TaSe2 with hexagonal layered structure,
but do not show any superconducting instability — in fact
the resistivity rises at low temperatures.

It has been pointed out recently [5] that the large mag-
netoresistance in GdI2 is primarily due to the freezing out
of the spin disorder scattering of the conduction electrons
in a magnetic field. There is indeed evidence for spin fluc-
tuation coupled to charge degrees of freedom in the ESR
experiments [6]. The broad resistivity anomaly at Curie
temperature (Tc) shifts towards higher temperatures with
magnetic field. From susceptibility measurements [2] a
variety of regions with different degree of spin ordering
have been proposed. The high-temperature ferromagnetic
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phase gives way to regions of frozen or short-range cor-
related spins at lower temperatures. At about 33% hole
doping a sliver of spin glass phase appears at low temper-
atures (T < 20 K) changing over to a paramagnetic (PM)
phase with doping.

In GdI2 the rare earth Gd ions have one electron in the
d-band coupled to the localised Gd 4f electrons through
ferromagnetic exchange in the configuration 4f75d1. The
rare earth ions are arranged in a hexagonally coordinated
layer structure, each Gd ion has six nearest-neighbour Gd
ions. Each such layer is separated from the next one by
two layers of iodine atoms. This results in having the inter-
layer coupling among the Gd ions considerably weaker
than the intra-layer one. LDA band structure results indi-
cate a spin splitting of the conduction band [1] — the split-
ting is nearly complete in the LDA+U results. The crys-
tal field in the trigonal prismatic layered dichalcogenide
is negligible and the 5d orbitals are quite strongly mixed.
Band structure calculations (see below) indicate that there
is one half-filled d-band that crosses the Fermi level. The
on-site Coulomb interaction in the rare earth 5d level is
generally not very strong. But a single, half-filled narrow
d-band crossing the Fermi level and low dimensionality of
the system make this repulsion quite relevant. The pres-
ence of short-range spin fluctuations and spin disordered
phases already point to competing magnetic exchange in-
teractions in the system. In the half-filled single d-band,
even a small Coulomb repulsion generates AF fluctuations
that will compete with the FM interaction mediated by
the conduction band via the FM f − d exchange (similar
to the Zener double exchange (DE) mechanism). It is also
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Fig. 1. (Color online) LSDA band structure and the total DOS of GdI2. Majority and minority spin bands are plotted with
solid and dashed lines, respectively.

useful to note that the GdI2 system never shows full sat-
uration moment, predicted by the LDA calculations. The
ordered state has a moment of 7.33µB, less than the full
saturation moment of 8µB out of which 7µB presumably
comes from the 4f core spins [1]. Hence the moment com-
ing from the 5d electron is considerably less than 1µB in-
dicating that correlation effects (beyond the density func-
tional calculations) and coupling of the spin and charge
degrees of freedom are very relevant. Also there is almost
no literature on the study of a correlated DE model on a
non-bipartite lattice. On a triangular lattice, it is known
that the nearest-neighbour Ising AF interactions are frus-
trated leading to a finite ground state entropy. Indeed, the
ground state of AF Heisenberg spin model or any corre-
lated electronic model on a triangular lattice is not known.
In the few studies that exist on frustrated itinerant sys-
tems [7], the geometric frustration of the lattice has often
been replaced by a random spin exchange. For a review
on these and related issues, see, e.g., reference [8].

2 LSDA band structure

Spin-polarized band structure calculations were performed
for the experimental crystal structure of GdI2 [1] within lo-
cal spin-density approximation (LSDA) using the LMTO
method [9] in the atomic sphere approximation with the
combined correction term taken into account. Gd 4f elec-
trons were assumed to be completely localized and treated
as quasi-core states. All seven majority spin 4f states were
occupied while the minority spin ones remain empty which
models the high-spin state of the Gd 4f shell. Ferromag-
netic arrangement of Gd magnetic moments was assumed.

The calculated band structure shown in Figure 1
agrees well with the results of previous calculations [1].
I 5p states are completely filled and separated from par-
tially occupied Gd 5d states by a gap of ∼2 eV. The lat-
ter are split into majority and minority spin subbands
by strong exchange interaction with the completely spin-

polarized 4f shell, the splitting being of order ∼0.9 eV.
The total width of 5d derived bands is 5 eV. The most
striking feature of the band structure is that for each spin
direction two lowest Gd 5d bands are split off from the
others by a gap of 1 eV.

Because of the trigonal local symmetry of a Gd site
d orbitals are split into a one-dimensional representation
a1 (dz2) and two two-dimensional representations e1 (dxz ,
dyz) and e2 (dxy, dx2−y2). Band plots show the contribu-
tion of different Gd 5d orbitals to a Bloch wave function
represented by the size of a dot (Fig. 2). One can glean
that the assumption [1] of two lowest Gd d bands formed
predominantly by a dz2 orbital is not confirmed by our cal-
culation. Except for the k space region around the Γ −A
high symmetry direction, the contributions of dz2 , dxy,
and dx2−y2 orbitals to the bands in question as well as to
the two bands above the gap are comparable. Thus, the
gap appears as a result of a rather strong hybridization
between the above orbitals in the ab plane. Four highest
Gd d bands are formed by dxz,yz states which are shifted
towards higher energies due to the trigonal component of
the ligand field. They do not hybridize with the former
three orbitals. The same conclusion on the nature of the
gap was drawn by Mattheiss [10] based on a tight binding
fit to the calculated band structure of a layered 2H-TaSe2

compound which is isostructural to GdI2.

3 Effective model

It is clear from the band structure calculations that the
band crossing the Fermi level is a mixture of primarily
three d-orbitals, namely dz2 , dxy and dx2−y2 . It is there-
fore not possible to obtain a one-parameter, tight-binding
fit of this band with only nearest neighbour hopping [12].
We fit this band using a three parameter (t0, tnn and
tnnn = −0.514, 0.070 and 0.073 eV) tight binding one
(Fig. 3a). The band width is about 1 eV and we assume
the on-site repulsion to be close to or less than this. In any
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Fig. 2. (Color online) The expanded view of
the Gd 5d bands. The size of filled circles is
proportional to the squared contribution of
5d orbitals of different symmetry to the Bloch
wave function at a given k point. The coordi-
nates of the high symmetry points are Γ (0,
0, 0), M ( 1√

3
, 0, 0), K ( 1√

3
, 1

3
, 0), and A (0,

0, 0.136) in 2π/a units; a being the lattice
constant.

case, we treat this as a parameter in our calculation. The
corresponding density of states (DOS) is shown in Fig-
ure 3b along with the DOS of the one-parameter nearest
neighbour DOS used by Hanisch et al. [11] in their study
of the Hubbard model on a triangular lattice. The values
of f − d exchange have been estimated from the above
band structure results assuming a mean-field description
for the exchange and a classical description for the core
spin. Assuming further that the spin splitting is entirely
due to f−d exchange, the value JfdS = 0.9 eV then serves
as an upper limit for the value of the exchange coupling
(S = 7/2 is the 4f core spin).

Based on the above arguments, a possible Hamiltonian
for the effective degrees of freedom can be written as

H = − J
∑

〈ij〉
Si.Sj − Jfd

∑

i

Si.si

−
∑

〈ij〉σ
tijc

†
i,σcj,σ +

U

2

∑

i,σ

n̂iσn̂i−σ. (1)

Here J is the exchange interaction between the localised
4f spins Si (S = 7/2). The second term is the f − d

FM exchange coupling (S, s are the core and conduction
spin, respectively) while the third term represents the hop-
ping of conduction electrons. The last term represents the
Hubbard interaction. In second-order perturbation theory,
J ∼ −|tij |2/(JfdS + U) is due to the virtual exchange of
conduction electrons between sites i and j. It turns out to
be antiferromagnetic (AF). Its magnitude is small for the
parameters discussed above. Away from half filling, the
DE mechanism favours an FM configuration of the core
spins driven by the kinetic energy (KE) of the electrons,
while the Coulomb repulsion U favours an antiferromag-
netic arrangement. This leads to competing ground states
tuned by filling, with additional richness coming from the
intrinsic geometric frustration of an AF state defined on
a triangular lattice. In the following, we keep J = 0 and
study the magnetic phase diagram of the model. We treat
core spins (S = 7/2) semi-classically and use mean-field
theory for the Coulomb repulsion U .

The effective 5d band at the Fermi surface in the
undoped system (x = 0) is half-filled i.e., the electron
density n = 1. Hole (electron) doping, therefore, implies
n < 1 (n > 1). Doping of holes in the GdI2 is effected
by the insertion of hydrogen [2] which localises electrons
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Fig. 3. (a) Tight binding fit (line) for the 5d band (dotted line) that crosses the Fermi level in Figure 1, (b) DOS corresponding
to the tight binding band in (a) with the inset showing the DOS for the tight binding band considered in the calculations of
Hanisch et al. [12] (see text).

away from the band. This is taken care by suitably mov-
ing the Fermi energy. In the limit of Jfd = 0 and with
a nearest-neighbour tight-binding band, this model rep-
resents the single band Hubbard model on a triangular
lattice studied within mean-field theory by several groups
[12–17]. These studies find a number of magnetically or-
dered phases, i.e., the FM state, the Néel state [ferro-
magnetic rows coupled antiferromagnetically, the ordering
wave vector Q = (2π/

√
3, 0)], the AFM state (classi-

cal state, angle between spins 120◦) and the linear spin-
density wave state (LSDW), containing zig-zag FM chains
[Q = (π, 0)]. For low U there is a region of no long range
order (paramagnetic phase) even at half-filling, contrary
to the square lattice where the band is particle-hole sym-
metric.

Disorder in this system plays a significant role in deter-
mining the resistivity and short-range order, particularly
at low temperatures. In fact, the resistivity is too high
— at 100 K the minimum value is about 20 Ω cm, three
orders of magnitude larger than the maximum metallic
resistivity for this system (about 10 mΩ cm, assuming a
cylindrical FS and lattice constants a, b � 4 Å along the
plane). It cannot be only disorder that is responsible for
this high resistivity in the metallic state, the interaction
surely plays a major role. At the moment we do not take
the disorder into account and look at the clean limit to
investigate the possible magnetic orders that the model
provides. The effects of disorder will be taken up in a sep-
arate calculation [18] later.

It is also useful to note that the 4f levels are not very
far from the Fermi level and a small hybridisation Vfd be-
tween 4f and 5d electrons cannot be ruled out completely
on the basis of energetics alone from the band structure
results. However, such a term should be very small owing
to reasonably large Uff and at most add a small AF cou-

pling between the d and f electrons effectively reducing
Jfd only slightly.

4 Calculation and results

The physics of the model is controlled by competition
between the FM double exchange and the AF correla-
tions coming from the Coulomb repulsion U . The geo-
metric frustration of the AF state on a triangular lat-
tice adds to the number of possible ground states and
their closeness in energy. In the limit Jfd → ∞, one can
project out the direction of conduction electron spins par-
allel to the local core spin by using the transformation
eiσzφi/2eiσyθi/2e−iσzφi/2. It operates on a two-component
spinor and reduces to a system of spinless fermions (the
angles θi, φi refer to the polar and azimuthal angle of the
conduction electron spin with respect to Si). The on-site
Coulomb term, in that case, becomes irrelevant. In this
situation the AF superexchange term becomes important,
though the DE mechanism would lead to an FM state
except close to n = 0 and n = 2.

However, the GdI2 and GdI2Hx systems are not really
described by this limit and a finite Jfd is the relevant limit
here. We treat the core spins classically and the Coulomb
interaction term in a mean-field approximation. To de-
scribe the different magnetic states in this approximation,
we choose S = S0eiQ.ri , where Q is the wave vector corre-
sponding to the chosen state described earlier. We choose
the spin quantization axis in the xy plane. The second
term in the Hamiltonian equation (1) then connects every
k point in the Brillouin zone to k ± Q and one has to diag-
onalise the Hamiltonian on a k-grid in the hexagonal BZ.
The order parameter is obtained by minimising the free
energy for a particular filling. For the present calculations
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Fig. 4. (Color online) Phase diagram in the U − n plane at Jfd = 0, 0.005, 0.07.

we have chosen to investigate the following ordered phases
known from previous investigations on triangular lattices.
The FM phase, the Neèl state, the three-sublattice AFM
state and the LSDW state mentioned earlier. We use the
three parameter tight-binding fit to the band appropriate
for GdI2 and GdI2Hx systems for our calculations.

As mentioned above, the Coulomb interactions are
generally not very strong in the 5d level, though for the
narrow band crossing the Fermi level (see Fig. 1) they may
still be very important. Since both f−d exchange and Udd

contribute to the spin splitting of the conduction band, it
is difficult to specify these two parameters. We therefore
allow them to vary over a possible range, treat them as
free parameters and draw the magnetic phase diagram.

In Figures 4a–4c the phase diagrams for Jfd = 0, 0.005
and 0.07 eV are shown. The Jfd = 0 phase diagram can
be compared with a similar phase diagram obtained by
Hanisch et al. [12] with a nn tight-binding band dispersion
Ek = 4t cos

√
3kx

2 cos ky

2 +2t cosky. It is noticed that there
are considerable differences between the two calculations.
At half-filling, n = 1, we observe the Neèl state for U close

to 0.4 eV (about 0.36 W , where W is the bandwidth). This
continues all the way upto U = 1 eV. The region of Neèl
state is quite wide in our phase diagram around n = 1.
For U < 0.39 eV, we obtain a paramagnetic phase all
the way down. Hanisch et al. report three-sublattice AF
phase at half-filling at Ured = U

U+Uc = 0.25 (Uc = 15.81t

for the triangular lattice, so that U = 0.58 W ) similar to
what has been observed earlier [13]. Away from half-filling
we get a small region of phase segregation (PS) followed
by LSDW, AFM, FM and finally another region of PS
depending on the value of U on the hole-doped side, while
for n > 1 there is a large region of phase separation from
the paramagnetic phase.

The phase diagram changes dramatically with finite
values of Jfd . As seen in Figure 4b the PM phase reduces
to a region close to the empty (n = 0) and full (n = 2)
bands. Due to the asymmetry in the DOS, the regions of
stability of the PM phase for n = 0 and n = 2 are very
different, the latter being larger. The rest of the PM region
becomes FM for finite f − d exchange as expected. The
AFM region completely disappears while the Neèl region
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becomes narrow beyond U = 1 eV. The LSDW phase also
shrinks considerably. With increasing Jfd the FM region
takes over completely (Fig. 4c). Two narrow PM regions
survive at the ends owing to negligible KE contributions.

It is obvious from the phase diagrams shown that the
value of Jfd for GdI2Hx systems should be very small but
finite. In the model without disorder, the phases are ex-
tremely sensitive to changes in the f −d exchange. This is
suggestive of the fact that indeed in GdI2Hx several phases
appear very close by in energy. Just as in other similar
correlated systems with competing interactions, e.g., the
manganites [19] and the double perovskites [20], a fine
tuning of the model parameters is necessary to specify
the phases of the system. Such a situation leads to mul-
tiple phases with possible microscopic phase segregation
as we observe in Figure 4. The appearance of a multitude
of phase segregated regions in the present case also has
to do with the underlying frustration of the AF states
on a triangular lattice. The large entropy present in the
ground state or very close to it make the ground states
easily tunable.

In view of such sensitivity of the phases to Jfd , we draw
the phase diagram also in n − Jfd plane for a fixed value
of U = 0.8 eV. Figure 5 reveals that in order to obtain
multiple phases, Jfd should be less than about 17.5 meV.
There are the phases LSDW, Neèl, FM and PM present in
the phase diagram with a region of phase separation com-
ing from the first order transition between the Neèl and
FM phases. For bigger values of Jfd the entire phase dia-
gram is ferromagnetic. Such a low value for f−d exchange
indicates that the spin splitting in the d-band is not due
entirely to the f −d exchange. Instead a considerable part
must come from correlations in the conduction band.

The phase diagram presented in Ryazanov et al. [2],
does not seem to show regions of phase segregation or AF
spin order. On the other hand they do indicate the pres-
ence of a spin glass region (or a mixture of FM and SG)
beyond n = 0.33 as can be inferred from the broad sus-

ceptibility peak they observe. Doping beyond n ≈ 0.7 sup-
presses long range magnetic order completely and leads to
a broad paramagnetic region.

The region n < 0.7 showed large thermal hysteresis
in the susceptibility data. There is a splitting between
the field-cooled and zero field-cooled susceptibility at low
temperature indicating disordered magnetic behaviour
(arising from domain rotations, magnetic clusters or su-
perparamagnetic regions). The ferromagnetic transition
temperature is also very sensitive to the method of sam-
ple preparation and the measurement techniques. As re-
ported by the authors [21], the data are quite noisy and
the system appears to be intrinsically disordered, no mat-
ter how carefully prepared. The high value of resistivity in
the metallic phase and the unsaturated magnetic moment
deep inside the FM phase are suggestive of the presence
of disorder as well as correlation. All this indicate a possi-
ble competition between different ground states, high de-
gree of magnetic disorder and a possible microscopic phase
segregations. As in the observed phase diagram, there is a
predominance of the FM region close to half-filling that we
also find, but there are other phases close by depending on
the value of f−d exchange coupling in the calculated phase
diagram. The actual value of hole doping in GdI2Hx for a
given value of x, is difficult to ascertain [2], though increas-
ing x is understood to have the effect of hole doping. It is
expected from our calculations that there would be sev-
eral different phases and microscopic phase segregations
in this system too.

The large magnetoresistance in GdI2 has already been
attributed [5] to the quenching of spin disorder scattering
of the conduction electrons. In a microscopically phase
segregated system, there is likely to be very large mag-
netic scattering across microscale ordered regions. In an
aligning field such scattering is reduced drastically leading
to a drop in resistivity. In the model, we had a superex-
change interaction to begin with which we have neglected
in the calculations that followed. The presence of such a
term would increase AF tendencies and thereby allow for
a larger value of Jfd than we derived above. Besides, the
end regions of the phase diagram, n = 0, 2 will also be-
come antiferromagnetic owing to the absence of itinerant
electrons there.

In conclusion, we have studied a model which, we be-
lieve, describes some of the features of the nearly two
dimensional, triangular lattice magnetic system GdI2Hx .
The resulting phase diagram has some broad similarity
with the experimental one, though it predicts much more
structure in the ground state phases than has so far been
observed. We hope to motivate more experiments in these
directions in order to check on our predictions.

We are indebted to R.K. Kremer and M. Ryazanov for com-
municating to us some of their results prior to publication and
for clarifying some of the experimental points involved.
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